author:
- A
- B
submission:
- PMIR
- B
year: "2024"
file:
related:
tags: []
review date: 2025-01-03
Summary
"Test-time adaptation (TTA), an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions."
Test-time adaptation (TTA)은 사전 학습된 모델을 테스트 시점에 레이블이 없는 데이터에 적응시키는 새로운 패러다임 [p.1, Abstract]
"This survey primarily focuses on the paradigm of test-time adaptation (TTA), which involves adapting a pre-trained model from the source domain to unlabeled data in the target domain before making predictions"
TTA는 source 데이터 없이 target 도메인의 unlabeled 데이터만을 사용하여 모델을 적응 [p.1, Introduction]
"Based on the characteristics of the test data, TTA methods can be categorized into three distinct cases in Fig. 1: test-time domain adaptation (TTDA), test-time batch adaptation (TTBA), and online test-time adaptation (OTTA)"
TTA는 테스트 데이터 형태에 따라 test-time domain adaptation (TTDA), test-time batch adaptation (TTBA), online test-time adaptation (OTTA)로 구분 [p.2, Introduction]
"Firstly, TTDA...utilizes all m test batches for multi-epoch adaptation before generating final predictions. Secondly, TTBA individually adapts...Thirdly, OTTA adapts the pre-trained model to the target data {b1, ··· , bm} in an online manner"
각 카테고리별로 서로 다른 적응 전략과 목표를 가짐 [p.2, Introduction]
"This survey primarily focuses on the paradigm of test-time adaptation (TTA), which involves adapting a pre-trained model from the source domain to unlabeled data in the target domain before making predictions"
TTA는 source 데이터 없이 target 도메인의 unlabeled 데이터만을 사용하여 모델을 적응 [p.1, Introduction]
"Based on the characteristics of the test data, TTA methods can be categorized into three distinct cases in Fig. 1: test-time domain adaptation (TTDA), test-time batch adaptation (TTBA), and online test-time adaptation (OTTA)"
TTA는 테스트 데이터 형태에 따라 test-time domain adaptation (TTDA), test-time batch adaptation (TTBA), online test-time adaptation (OTTA)로 구분 [p.2, Introduction]
"Firstly, TTDA...utilizes all m test batches for multi-epoch adaptation before generating final predictions. Secondly, TTBA individually adapts...Thirdly, OTTA adapts the pre-trained model to the target data {b1, ··· , bm} in an online manner"
각 카테고리별로 서로 다른 적응 전략과 목표를 가짐 [p.2, Introduction]
"which can be prohibitive in privacy-sensitive applications such as medical data"
TTA는 privacy-sensitive한 응용에서 특히 유용합니다. source 데이터 접근이 제한되는 의료 데이터와 같은 경우에 적합 [p.2, Introduction]
"To our knowledge, this is the first survey that provides a systematic overview of three distinct topics within the broad test-time adaptation paradigm"
본 연구는 TTA 분야의 첫 체계적인 서베이로서, 각 하위 분야별 최신 알고리즘들을 분류하고 다양한 응용 사례들을 분석 [p.2, Introduction]
"Machine learning methods strive to acquire a robust model during the training process that can effectively generalize to test samples, even in the presence of distribution shifts. However, these methods often suffer from performance degradation due to unknown test distributions"
"TTA has the advantage of being able to access test data from the target domain during the test phase...TTA only requires access to the pre-trained model from the source domain"
도메인 적응의 기존 방법들:
이들과 비교했을 때 TTA의 주요 차별점은:
Distribution Shift 문제
Covariate Shift: 입력 특성이 레이블을 결정하는 경우의 분포 변화 [p.3, Section 2.1: "covariate shift in which the input features cause the labels"]
Label Shift: 출력 레이블이 특성을 결정하는 경우의 분포 변화 [p.3, Section 2.1: "label shift in which the output labels cause the features"]
실제 예시: 다른 카메라로 촬영된 이미지, 다른 도시의 도로 장면, 다른 병원의 의료영상 등 [p.1, Introduction: "such as images captured by different cameras, road scenes of different cities, and imaging devices in different hospitals"]
Privacy 제약 문제
Online/Streaming 환경 문제
TTDA (Test-Time Domain Adaptation)
TTBA (Test-Time Batch Adaptation)
OTTA (Online Test-Time Adaptation)
<각 방법론의 특징적인 구현 사례>:
- SHOT: Centroid-based pseudo labeling을 통한 TTDA [p.5 Table 1]
- Tent: Entropy minimization을 통한 OTTA [p.19 Section 5.2.2]
- MEMO: 다중 augmentation을 활용한 TTBA [p.15-16 Section 4.2.2]